General Certificate of Education January 2009 Advanced Subsidiary Examination

# MATHEMATICS Unit Pure Core 2

AQA

MPC2

Tuesday 13 January 2009 9.00 am to 10.30 am

# For this paper you must have:

• an 8-page answer book

• the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

# Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

#### Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

#### Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

# Answer all questions.

1 The diagram shows a sector *OAB* of a circle with centre *O* and radius 10 cm.



The angle AOB is 0.8 radians.

- (a) Find the area of the sector. (2 marks)
- (b) (i) Find the perimeter of the sector *OAB*. (3 marks)
  - (ii) The perimeter of the sector *OAB* is equal to the perimeter of a square. Find the area of the square. (2 marks)
- 2 (a) Use the trapezium rule with four ordinates (three strips) to find an approximate value for

$$\int_{1.5}^{6} x^2 \sqrt{x^2 - 1} \, \mathrm{d}x$$

giving your answer to three significant figures. (4 marks)

(b) State how you could obtain a better approximation to the value of the integral using the trapezium rule. (1 mark)



3 The diagram shows a triangle *ABC*.



The size of angle A is  $63^{\circ}$ , and the lengths of AB and AC are 7.4 m and 5.26 m respectively.

- (a) Calculate the area of triangle *ABC*, giving your answer in m<sup>2</sup> to three significant figures. (2 marks)
- (b) Show that the length of *BC* is 6.86 m, correct to three significant figures. (3 marks)
- (c) Find the value of sin **B** to two significant figures. (2 marks)
- 4 The diagram shows a sketch of the curves with equations  $y = 2x^{\frac{3}{2}}$  and  $y = 8x^{\frac{1}{2}}$ .



The curves intersect at the origin and at the point A, where x = 4.

(a) (i) For the curve 
$$y = 2x^{\frac{3}{2}}$$
, find the value of  $\frac{dy}{dx}$  when  $x = 4$ . (2 marks)

(ii) Find an equation of the normal to the curve  $y = 2x^{\frac{3}{2}}$  at the point A. (4 marks)

(b) (i) Find  $\int 8x^{\frac{1}{2}} dx$ . (2 marks)

(ii) Find the area of the shaded region bounded by the two curves. (4 marks)

(c) Describe a single geometrical transformation that maps the graph of  $y = 2x^{\frac{3}{2}}$  onto the graph of  $y = 2(x+3)^{\frac{3}{2}}$ . (2 marks)

Turn over 🕨

5 (a) By using the binomial expansion, or otherwise, express  $(1+2x)^4$  in the form

$$1 + ax + bx^2 + cx^3 + 16x^4$$

where a, b and c are integers.

- (b) Hence show that  $(1+2x)^4 + (1-2x)^4 = 2 + 48x^2 + 32x^4$ . (3 marks)
- (c) Hence show that the curve with equation

$$y = (1+2x)^4 + (1-2x)^4$$

has just one stationary point and state its coordinates. (4 marks)

6 (a) Write each of the following in the form  $\log_a k$ , where k is an integer:

- (i)  $\log_a 4 + \log_a 10$ ; (1 mark)
- (ii)  $\log_a 16 \log_a 2$ ; (1 mark)
- (iii)  $3 \log_a 5$ . (1 mark)
- (b) Use logarithms to solve the equation  $(1.5)^{3x} = 7.5$ , giving your value of x to three decimal places. (3 marks)
- (c) Given that  $\log_2 p = m$  and  $\log_8 q = n$ , express pq in the form  $2^y$ , where y is an expression in m and n. (3 marks)

(4 marks)

- 7 (a) Solve the equation  $\sin x = 0.8$  in the interval  $0 \le x \le 2\pi$ , giving your answers in radians to three significant figures. (3 marks)
  - (b) The diagram shows the graph of the curve  $y = \sin x$ ,  $0 \le x \le 2\pi$  and the lines y = k and y = -k.



The line y = k intersects the curve at the points P and Q, and the line y = -k intersects the curve at the points R and S.

The point M is the minimum point of the curve.

- (i) Write down the coordinates of the point M. (2 marks)
- (ii) The x-coordinate of P is  $\alpha$ .

Write down the x-coordinate of the point Q in terms of  $\pi$  and  $\alpha$ . (1 mark)

- (iii) Find the length of *RS* in terms of  $\pi$  and  $\alpha$ , giving your answer in its simplest form. (2 marks)
- (c) Sketch the graph of  $y = \sin 2x$  for  $0 \le x \le 2\pi$ , indicating the coordinates of points where the graph intersects the x-axis and the coordinates of any maximum points.

(5 marks)

8 The 25th term of an arithmetic series is 38.

The sum of the first 40 terms of the series is 1250.

- (a) Show that the common difference of this series is 1.5. (6 marks)
- (b) Find the number of terms in the series which are less than 100. (3 marks)

# END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page